UTMS 2006 – 8 April 28 , 2006 Motion of interfaces by the Allen - Cahn type equation with multiple - well potentials

نویسنده

  • Takeshi Ohtsuka
چکیده

We consider the singular limit of the Allen–Cahn type equation with a periodic nonlinear term. We obtain that several interfaces appear when the interface thickness parameter (denoted by ε) tends to 0. We also obtain that the interfaces move by the mean curvature flow with driving force term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Slow motion for the nonlocal Allen–Cahn equation in n-dimensions

The goal of this paper is to study the slow motion of solutions of the nonlocal Allen–Cahn equation in a bounded domain Ω ⊂ R, for n > 1. The initial data is assumed to be close to a configuration whose interface separating the states minimizes the surface area (or perimeter); both local and global perimeter minimizers are taken into account. The evolution of interfaces on a time scale ε−1 is d...

متن کامل

Existence of a Solution to a Vector-valued Allen-cahn Equation with a Three Well Potential

where W : R2 → R is positive function with three local minima, given by {ci}i=1, and the angles θi, with θ3 = 2π + θ0, are determined by the potential W (for a more precise description on how these angles are determined we refer the reader to definitions (7) and (8)). In [22] an analogous result was proved by P. Sternberg when W has two minima. Later on, Bronsard, Gui and Schatzman [6] consider...

متن کامل

Coarsening fronts

We characterize the spatial spreading of the coarsening process in the Allen-Cahn equation in terms of the propagation of a nonlinear modulated front. Unstable periodic patterns of the Allen-Cahn equation are invaded by a front, propagating in an oscillatory fashion, and leaving behind the homogeneous, stable equilibrium. During one cycle of the oscillatory propagation, two layers of the period...

متن کامل

Primal-dual active set methods for Allen-Cahn variational inequalities

This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006